OSLC for Developers
Technical Foundations
Tutorials

Services & Design Patterns

Security

Integration Tutorial
OSLC Introduction
Running Examples
Implementing Provider ~
Getting Started
Planning Provider
Service Resources
Intro to OSLC4J
Ul Preview
Ul Selection
Ul Creation
Factory
Implementing Consumer ~
Getting Started
Use Cases

Iinkea & Previews

OSLC for Developers
Technical Foundations
Tutorials
Services & Design Patterns
Security
Integration Tutorial
OSLC Introduction
Running Examples
Implementing Provider
Getting Started
Planning Provider
Service Resources
Intro to OSLCAaJ
Ul Preview
Ul Selection
Ul Creation

Factory

Integration Tutorial
OSLC Introduction
Running Examples
Implementing Provider
Getting Started
Planning Provider
Service Resources
Intro to OSLC4J
Ul Preview
Ul Selection

Ul Creation

Planning ocut a partial implementation of (-
OS LC—C M Different approac

implementing O<

Table of content:

Architecture for 1

Our integration use cases that we want to add to Bugzilla require only a partial implementation of
the OSLC Change Management specification:

Service Provider and Catalogs: These resources describe the services offered and make it
possible for consumers of the OSLC CM service to find the ones they need. In Part 2, you will
use these to help implement Automated Bug Creation so that the Testing team's build scripts
can use Service Provider documents to locate a URL.

OSLC representations for bugs: This means making each Bug available at a stable URI as an
OSLC-CM Change Request resource, with RDF/XML and Ul Preview representations via
content negotiation. In Part 2, these RDF/XML representations will help automate customer
notifications.

= Del d Ul for Ci & : Enables users of other systems to create and select
bugs in Bugzilla without leaving the web Ul of those other systems. You'll use these dialogs
in Part 2's to make it easy to link a customer incident to a Bugzilla bug.

Creation Factories for bugs: Enables creation of new bugs by HTTP posting RDF/XML bug
representations to the server. We also used this feature in Part 2 for Automated Bug
Creation.

In our case, building an adapter makes the most sense.

. A~ Back to top
Architecture for the adapte:

Download the OSLC4d Bugzilla adapier. We'll be exploring the adapter instead of writing one
from scratch.
The OSLCA44 Bugzilla adapter is a RESTful web application built on Java EE with JAX RS, It has
the following additional dependencies:
- OSLOA) SDK part of Eclipse Lyo, OSLCA4J is a Java toolkit that simplifies building osLC
applications

= JdzBugrilla: Java wrapper classes for Bugzilla's XML-RPC based web services interface
In addition, it uses the following helper classes (in the utils directory):

= BugzillaHttpClient: helper classes for doing HTTP GET requests against a Bugzilla server
= HttpUtils: helper classes for working with HTTP requests and responses

- StringUtils: helper classes for dealing with strings

= XmluUrtils: helper classes for XML processing
central organizing concept of OSLC that represents a "container” of resources.

In Bugzilla, bugs are crganized by Product. Before you can use Bugzilla, you have to tell the
system which Products exist in order to report bugs against them.

Given that, in our adapter each Bugzilla Product will be represented by an OSLC Service Provider
REST service. Each Service Provider will include URIs for a Delegated Ul for bug selection, a
Delegated Ul for bug creation, a Query Capability so that bugs can be queried via HTTP GET, and
a Creation Factory so that new bugs can be created via HTTP POST.

To enable client programs to find the Service Providers provided by Bugzilla (and because one
Bugzilla instance can have multiple Products), we'll use an OSLC Service Provider Catalog. When
a client wants to connect to Bugzilla, it first fetches the catalog, which provides a list of Service

(] OSLC Developer Guide

OSLC for Developers Eclipse Lyo OSLCAJS OSLCaNet PyOSLC Sample Applications

OSLC for Developers
Tutorials

Services & Design Patterns
Security

Integration Tutorial
OSLC Introduction
Running Examples
Implementing Provider
Getting Started
Planning Provider
Service Resources
Intro to OSLC4.)
Ul Preview
Ul Selection
Ul Creation
Factorv

Implementing Provider
Getting Started
Planning Provider
Service Resources
Intro to OSLC4J

Ul Preview

Providing OSLC representations of Bugzilla (=N -
bugs using Lyo

In the previous section we noted that we used Eclipse Lyo to transform Plain Old Java Object
(POJO) representations of OSLC resources into RDF, XML, and JSON formats. In this section,
we'll look more closely at how Eclipse Lyo defines OSLC resources. Then we'll make Bugzilla
Bugs available as OSLC Change Management resources in a variety of formats.

What is Eclipse Lyo?

Eclipse Lyo is a Java SDK for developing OSLC provider or consumer implementations. OSLC
resources can be modeled with plain old Java objects (POJOs) which are annotated to provide
the information Eclipse Lyo needs to create resource shapes, service provider documents, and to
serialize/de-serialize OSLC resources from Java to representations such as RDF or JSON.

Providing OSLC representations of Bugzilla bugs

Like with the ServiceProviderService and ServiceProviderCatalogService (discussed in in more
detail in the previous section), the BugzillaChangeRequestService class has many JAX-RS
methods to handle both collections of BugzillaChangeRequests and individual
BugzillaChangeRequests with a a variety of HTTP requests and output formats.




Intro to OSLC4J
Ul Preview

Ul Selection

Ul Preview

Ul Selection

Ul Creation

Factory
Implementing Consumer ~

Getting Started

Use Cases

Links & Previews

Delegated Ul

Notify Customers

Automatic Bugs

OSLC for Developers
Tutorials
Services & Design Patterns
Security
Integration Tutorial
OSLC Intreduction
Running Examples
Implementing Provider
Getting Started
Planning Provider
Service Resources
Intre 1o OsLCad
Ul Preview
Ul Selection
Ul Creation
Factory

Implementing Consumer
Getting Started
Use Cases
Links & Previews
Delegated Ul
Notify Customers
Automatic Bugs

Implementing Consumer
Getting Started
Use Cases
Links & Previews
Delegated UI
Notify Customers
Automatic Bugs

Implementing Consumer ~
Getting Started
Use Cases
Links & Previews
Delegated Ul
Notify Customers
Automatic Bugs

Implementing Consumer
Getting Started
Use Cases
Links & Previews
Delegated Ul
Notify Customers
Automatic Bugs

UI Creation
Factory

Implementing Consumer
Getting Started
Use Cases
Links & Previews
Delegated Ul
Natify Customers
Automatic Bugs

In the previous section we explored how the BugzillaChangeRequestService class handles
requests for collections of BugzillaChangeRequests or individual BugzillaChangeRequests.

Send
we'll put this dialog to use in the NinaCRM application later on. bug b
We now have the ability to use user interface delegation as a way to provide a simple way for
consumer applications to both create and select bugs. We've also exposed this capability from
our service provider resource definition.
Next, we'll explore how to make it easier for other applications to create new bugs
programmatically.
Next: Part 1.7, Factory
(S June 14,2025 (3 May 23, 2019
Providing a creation factory =

With OSLC you can allow pesple 1o areate bugs via Delegated Ul however, like all Ul approaches,
an actual human user must be invelved. What if you want to support automated bug creation; for
example, enabling a build server to automatically create a bug whenever there is a test or a build
failure?

To allow clients to create new bugs automatically, you need to support an OSLC Creation Factory
as described in the OSLC Core speci

Adding a method to the adapter to create
BugzillaChangeRequests via HT TR POST
Recall that when we created a delegated Ul for creating new bugs, we wrote code in the

BugzillaManager class to use the j2bugzilla API for creation of bugs; we'll re-use the
createBua() method for automated bug creation via POST.

5. The OSLC provider returns HTML that you can show to the user.

We explored the OSLC Provider side of this in more detail earlier in this tutorial.

Example XML for a Ul preview

Here's an example of the XML that an OSLC Provider will return when you request the Ul Preview
representation of a resource:

Starting the NinaCRM sample application and the Bugzilla adapter.
Open http:/localhost8181/ninacrm/ in a web browser. You'll see a sample incident:
“isample incident #676 in the NinaCRM sample application

At the bottom, find the Related Defects heading. This is where we show links to related bugs in
Bugzilla; the HTML is a simple unordered list:

Showing Ul Previews via Dojo Tooltip Widgets

Throughout this, we'll be using the Dojo JavaScript toolkit to smooth out browser differences and
build Ul components like buttons and tooltips.

Open the file index.jsp in /src/main/webapp/ and search for
dojo.addOnLoad(addPreviewMouseOverHandlers)

Hara whan tha nana is dana lnadina wa niea tha dain coecedd mathad 0 aat all tha

Earlier in this tutorial, we walked through an implementation of Delegated Uls for
OsLCaJBugzilla, both for selecting bugs and creating new bugs. In addition to providing the Ul
and handling the results, the OSLC4JBugzilla adapter (or any other OSLC provider application)
announces in its Service Provider Documents the URL location and recommended size of the Ul

The application that wants to use the Delegated Ul (the OSLC Consumer) creates an <iframe=
for the Delegated Ul so that the user can interact with it. The Consumer application must also
listen to the <iframe>= do something with the results of the user's actions.

work with any OSLG Provider.

As we noted when wea implemented Service Providers and Catalogs, one of the cores of OSLC is
that clients should not have to hard-code any URLs other than a Service Provider Catalog. Clients
should be able to parse the Catalog and navigate from the Catalog to the Service Providers; the
Service Providers will then expose the available OSLC services

If you'd like to follow along with a real Service Provider Catalog or Service Provider, see the
“Viewing the machinereadable formats of a Service Provider Catalogsection near the bottom of
this section.



